设为首页收藏本站 官方微信

钢琴世界

 找回密码
 立即注册

只需一步,快速开始

扫一扫,极速登录

手机动态码快速登录

手机号快速注册登录

查看: 878|回复: 4

2021年与2020年考研概率论与数理统计大纲变化对比——数一

[复制链接]

1398

主题

2882

帖子

5677

积分

论坛元老

Rank: 8Rank: 8

积分
5677
发表于 2020-9-12 09:26:40 | 显示全部楼层 |阅读模式 IP:吉林通化
2021年与2020年考研概率论与数理统计大纲变化对比——数一
打赏鼓励一下!

423

主题

1892

帖子

2746

积分

金牌会员

Rank: 6Rank: 6

积分
2746
发表于 2020-9-12 09:27:16 | 显示全部楼层 IP:北京
章节 2020年数学考试大纲考试内容和考试要求 2021年数学考试大纲考试内容和考试要求 变化对比
概率论与数理统计 一、随机事件和概率 考试内容随机事件与样本空间  事件的关系与运算  完备事件组   概率的概念  概率的基本性质  古典型概率  几何型概率 条件概率  概率的基本公式  事件的独立性  独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法. 考试内容随机事件与样本空间  事件的关系与运算  完备事件组   概率的概念  概率的基本性质  古典型概率  几何型概率 条件概率  概率的基本公式  事件的独立性  独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法. 对比:无变化
二、随机变量及其分布 考试内容随机变量  随机变量分布函数的概念及其性质  离散型随机变量的概率分布  连续型随机变量的概率密度  常见随机变量的分布  随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布. 考试内容随机变量  随机变量分布函数的概念及其性质  离散型随机变量的概率分布  连续型随机变量的概率密度  常见随机变量的分布  随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布. 对比:第4条的指数分布的概率密度少一个字“若”
回复

使用道具 举报

94

主题

890

帖子

1043

积分

金牌会员

Rank: 6Rank: 6

积分
1043
发表于 2020-9-12 09:27:50 | 显示全部楼层 IP:江苏
三、多维随机变量及其分布 考试内容  多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度  随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求  1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.   2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义.  4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布. 考试内容  多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度  随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求  1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.   2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义.  4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布. 对比:无变化
四、随机变量的数字特征 考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望. 考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望. 对比:无变化
回复

使用道具 举报

111

主题

1147

帖子

1349

积分

金牌会员

Rank: 6Rank: 6

积分
1349
发表于 2020-9-12 09:27:58 | 显示全部楼层 IP:北京
五、大数定律和中心极限定理 考试内容  切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理考试要求  1.了解切比雪夫不等式.  2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理). 考试内容  切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理考试要求  1.了解切比雪夫不等式.  2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理). 对比:无变化
六、数理统计的基本概念 考试内容总体  个体  简单随机样本  统计量  样本均值  样本方差和样本矩  分布  分布  分布  分位数  正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布. 考试内容总体  个体  简单随机样本  统计量  样本均值  样本方差和样本矩  分布  分布  分布  分位数  正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布. 对比:无变化
回复

使用道具 举报

99

主题

1029

帖子

1213

积分

金牌会员

Rank: 6Rank: 6

积分
1213
发表于 2020-9-12 09:28:10 | 显示全部楼层 IP:广东广州
七、参数估计 考试内容点估计的概念  估计量与估计值  矩估计法  最大似然估计法  估计量的评选标准  区间估计的概念  单个正态总体的均值和方差的区间估计  两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间. 考试内容点估计的概念  估计量与估计值  矩估计法  最大似然估计法  估计量的评选标准  区间估计的概念  单个正态总体的均值和方差的区间估计  两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间. 对比:无变化
八、假设检验 考试内容显著性检验  假设检验的两类错误  单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验. 考试内容显著性检验  假设检验的两类错误  单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验. 对比:无变化
回复

使用道具 举报

 
 
点击这里给我发消息
点击这里给我发消息
官方微信

招募城市商务合作 电话/微信 18702940294
 

QQ|钢琴世界 ( 陕ICP备16012637号-2 )

GMT+8, 2025-5-11 12:18 , Processed in 0.756740 second(s), 48 queries .

Powered by 钢琴世界 PIANOWORLD.CN

Copyright © 2015-2022, Tencent Cloud.

快速回复 返回顶部 返回列表